Protostar Formation in Magnetic Molecular Clouds: The Late Stages

Statistics – Computation

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We follow the formation and evolution of a molecular cloud core from mean molecular cloud densities to a density enhancement of twelve orders of magnitude. It is in this high density regime that a hydrostatic protostellar object forms, and the magnetic flux problem of star formation is resolved. We simulate the evolution of the core using an adaptive-grid numerical code, which follows the nonideal six-fluid MHD equations, and accounts explicitly and self-consistently for gravity, thermal pressure, the magnetic field, cosmic-ray and radioactivity-induced ionization, and the chemical and dynamical effects of dust grains. We evaluate the relative importance of different magnetic flux-loss mechanisms (ambipolar diffusion and Ohmic dissipation) in the resolution of the magnetic flux problem of star formation, and we identify the density regime where Ohmic dissipation dominates magnetic losses. In the high-density central parts of the core, the magnetic field acquires and almost spatially uniform configuration, with a value which, at the end of our calculation is found to be in excellent agreement with meteoritic measurements of magnetic fields in the protosolar nebula. After a hydrostatic protostellar object is formed, we continue to follow the evolution of the isothermal disk surrounding it and supplying it with accreted matter. We do so by introducing a "central sink", which allows us to exclude the central region from our computations, while still accounting for the physical effects of the accumulating mass and magnetic flux. In this way, we follow the accretion process onto the protostar until one solar mass is accumulated in the central sink. During this phase, we discover exciting new phenomena, such as the formation and dissipation of a series of magnetically driven radial shocks that occur in a quasi-periodic fashion.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Protostar Formation in Magnetic Molecular Clouds: The Late Stages does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Protostar Formation in Magnetic Molecular Clouds: The Late Stages, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Protostar Formation in Magnetic Molecular Clouds: The Late Stages will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-746472

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.