Statistics – Computation
Scientific paper
Jan 2002
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2002iaf..confe.691p&link_type=abstract
IAF abstracts, 34th COSPAR Scientific Assembly, The Second World Space Congress, held 10-19 October, 2002 in Houston, TX, USA.,
Statistics
Computation
Scientific paper
The ham radio operators group AMSAT is currently preparing studies about the feasibility of developing a low cost mission to mars. The probe, called P5-A shall be mainly based on the design of the amateur radio satellite P3-D, launched in November 2000 atop Ariane 507. The satellite design team of AMSAT is lead by the German subsidiary of this international organisation and is supported by ASTRIUM in Lampolshausen, Germany. The support of ASTRIUM may encompass the delivery of major propulsion system components like the bi-propellant Apogee Engine, as already done for former AMSAT projects. Further on propulsion system experts from ASTRIUM have offered support to AMSAT during the design process and during critical satellite operations (e.g. fuelling on launch site). The present paper describes the mission design and the general layout of the P5-A mars probe with strong emphasise on the propulsion system. Probe Design Communication and development of the corresponding techniques is the main field of activities of the amateur radio operators. Thus the main payload of the probe will be an extensive and sophisticated communication equipment. Other organisations even have shown interest to use this mars probe as data relay for their own missions. To save costs, the design of the recently developed satellite P3-D shall be used as far as possible. One side of the hexagonal shaped structure of the satellite will be occupied by a dish antenna to establish from mars orbit a high data download rate of 50,000 bits/sec at the frequency of 10.5 GHz. As counterpart on ground the 20 m Cassegrain-reflector of Bochum University will be used. Due to the fixed antenna the probe has to be 3- axis stabilised. Therefore the use of magnetic wheels in conjunction with thrusters is foreseen. The paper will describe the propulsion system layout and design. For impulsive manoeuvres the ASTRIUM built 400N Apogee Engine is foreseen. For interplanetary corrections or thrust phases the use of an electric propulsion system, like the ATOS Arcjet thruster used on P3-D, built by the University of Stuttgart with support of ASTRIUM is in discussion. Mission Design Due to the heritage of the P3-D satellite the positions and the volume of the propellant tanks are fixed. Also the decision for a bi-propellant propulsion subsystem for main propulsion was made. Therefore the capability of the propulsion system to create a velocity increment of about v = 3 km/s is, more or less, fixed. Mission studies have shown that the existing propulsion capability is sufficient to reach planet mars. As launch date the year 2007 is envisaged. The mission computations to determine the optimal flight trajectory, launch window, including orbital manoeuvres near earth and mars will be presented. For the computations a patched-conic approximation was used. As the launch of the probe shall be performed not as primary payload of the launcher, no possibility exists to influence the exact launch date. Thus, considerations are made to use the waiting time near earth for insertion to the optimal interplanetary trajectory, possibly by performing a swing-by on moon to save energy.
Peukert M.
Riehle M.
No associations
LandOfFree
Propulsion System and Mission Design of AMSAT P5-A Mars Probe does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Propulsion System and Mission Design of AMSAT P5-A Mars Probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Propulsion System and Mission Design of AMSAT P5-A Mars Probe will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1332409