Mathematics – Classical Analysis and ODEs
Scientific paper
2006-07-11
Mathematics
Classical Analysis and ODEs
46 pages
Scientific paper
10.1007/s00220-007-0289-0
Based on Spiridonov's analysis of elliptic generalizations of the Gauss hypergeometric function, we develop a common framework for 7-parameter families of generalized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In each case we derive the symmetries of the generalized hypergeometric function under the Weyl group of type E_7 (elliptic, hyperbolic) and of type E_6 (trigonometric) using the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contiguous relations using fundamental addition formulas for theta and sine functions. The top level degenerations of the hyperbolic and trigonometric hypergeometric functions are identified with Ruijsenaars' relativistic hypergeometric function and the Askey-Wilson function, respectively. We show that the degeneration process yields various new and known identities for hyperbolic and trigonometric special functions. We also describe an intimate connection between the hyperbolic and trigonometric theory, which yields an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in trigonometric hypergeometric functions.
de Bult Fokko J. van
Rains Eric M.
Stokman Jasper V.
No associations
LandOfFree
Properties of generalized univariate hypergeometric functions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Properties of generalized univariate hypergeometric functions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Properties of generalized univariate hypergeometric functions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-138901