Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006spie.6275e..72n&link_type=abstract
Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III. Edited by Zmuidzinas, Jonas; Holland, Wayne S.; W
Astronomy and Astrophysics
Astronomy
3
Scientific paper
We are developing cryogenic readout circuits for the array of superconducting tunneling junctions (STJs) at submillimeter wavelength SISCAM (Superconductive Imaging Submillimeter-wave CAMera). A current conceptual design of SISCAM will employ a direct hybrid array system just like CMOS image sensors widely used at optical and infrared wavelength. Because of relatively large impedance of the STJ fabricated by RIKEN (~10 MΩ in a dark condition), it requires readout preamplifier with low current noise. Therefore, it is not suitable for the STJ to use a readout system by Superconductive Quantum Interferences Devices as for Transition Edge Sensor. Instead, we selected capacitive transimpedance amplifier (CTIA) using a SONY n-type GaAs Junction Field Effect Transistor (JFET). However, the CTIA has not been used as the readout of the STJ. Therefore, we measured the photocurrent of the STJ by the CTIA with Silicon JFETs and by transimpedance amplifier (TIA), which is a conventional readout for the STJ, in the same bias condition, and confirmed both results are in good agreement. Additionally, we report development of readout integrated circuits with GaAs JFETs. In order to design the CTIA circuit with the GaAs JFETs, we fabricated the independent GaAs JFETs and matched pairs of them. We measured electrical characteristics of these GaAs JFETs at the cryogenic temperatures less than 4.2 K. We demonstrated performance of an operational amplifier fabricated with the GaAs JFETs measuring a differential amplifier with the dual GaAs JFET, and additionally estimate amplifier gain, offset voltage, and power consumption of the CTIA by the circuit simulation using the PSPICE. In consequence, the expected performance fulfills the requirements for the readout amplifier of the STJs except for the noise performance.
Fujiwara Motoyasu
Kobayashi Jun
Matsuo Hiroshi
Nagata Harunori
No associations
LandOfFree
Progress on GaAs cryogenic readout circuits for SISCAM does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Progress on GaAs cryogenic readout circuits for SISCAM, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Progress on GaAs cryogenic readout circuits for SISCAM will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1893855