Computer Science – Artificial Intelligence
Scientific paper
2012-02-14
Computer Science
Artificial Intelligence
Scientific paper
Many representation schemes combining first-order logic and probability have been proposed in recent years. Progress in unifying logical and probabilistic inference has been slower. Existing methods are mainly variants of lifted variable elimination and belief propagation, neither of which take logical structure into account. We propose the first method that has the full power of both graphical model inference and first-order theorem proving (in finite domains with Herbrand interpretations). We first define probabilistic theorem proving, their generalization, as the problem of computing the probability of a logical formula given the probabilities or weights of a set of formulas. We then show how this can be reduced to the problem of lifted weighted model counting, and develop an efficient algorithm for the latter. We prove the correctness of this algorithm, investigate its properties, and show how it generalizes previous approaches. Experiments show that it greatly outperforms lifted variable elimination when logical structure is present. Finally, we propose an algorithm for approximate probabilistic theorem proving, and show that it can greatly outperform lifted belief propagation.
Domingos Pedro
Gogate Vibhav
No associations
LandOfFree
Probabilistic Theorem Proving does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Probabilistic Theorem Proving, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Probabilistic Theorem Proving will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-90457