Prime end rotation numbers of invariant separating contunua of annular homeomorphisms

Mathematics – Dynamical Systems

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages

Scientific paper

Let $f$ be a homeomorphism of the closed annulus $A$ isotopic to the identity, and let $X\subset {\rm Int}A$ be an $f$-invariant continuum which separates $A$ into two domains, the upper domain $U_+$ and the lower domain $U_-$. Fixing a lift of $f$ to the universal cover of $A$, one defines the rotation set $\tilde \rho(X)$ of $X$ by means of the invariant probabilities on $X$, as well as the prime end rotation number $\check\rho_\pm$ of $U_\pm$. The purpose of this paper is to show that $\check\rho_\pm$ belongs to $\tilde\rho(X)$ for any separating invariant continuum $X$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Prime end rotation numbers of invariant separating contunua of annular homeomorphisms does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Prime end rotation numbers of invariant separating contunua of annular homeomorphisms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prime end rotation numbers of invariant separating contunua of annular homeomorphisms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-517456

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.