Astronomy and Astrophysics – Astronomy
Scientific paper
Jul 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010spie.7738e..12m&link_type=abstract
Modeling, Systems Engineering, and Project Management for Astronomy IV. Edited by Angeli, George Z.; Dierickx, Philippe. Proce
Astronomy and Astrophysics
Astronomy
Scientific paper
The principal dynamic disturbances acting on a telescope segmented primary mirror are unsteady wind pressure (turbulence) and narrowband vibration from rotating equipment. Understanding these disturbances is essential for the design of the segment support assembly (SSA), segment actuators, and primary mirror control system (M1CS). The wind disturbance is relatively low frequency, and is partially compensated by M1CS; the response depends on the control bandwidth and the quasi-static stiffness of the actuator and SSA. Equipment vibration is at frequencies higher than the M1CS bandwidth; the response depends on segment damping, and the proximity of segment support resonances to dominant vibration tones. We present here both disturbance models and parametric response. Wind modeling is informed by CFD and based on propagation of a von Karman pressure screen. The vibration model is informed by analysis of accelerometer and adaptive optics data from Keck. This information is extrapolated to TMT and applied to the telescope structural model to understand the response dependence on actuator design parameters in particular. Whether the vibration response or the wind response is larger depends on these design choices; "soft" (e.g. voice-coil) actuators provide better vibration reduction but require high servo bandwidth for wind rejection, while "hard" (e.g. piezo-electric) actuators provide good wind rejection but require damping to avoid excessive vibration transmission to the primary mirror segments. The results for both nominal and worst-case disturbances and design parameters are incorporated into the TMT actuator performance assessment.
Colavita Mark M.
MacMynowski Douglas G.
Skidmore Warren
Vogiatzis Konstantinos
No associations
LandOfFree
Primary mirror dynamic disturbance models for TMT: vibration and wind does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Primary mirror dynamic disturbance models for TMT: vibration and wind, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Primary mirror dynamic disturbance models for TMT: vibration and wind will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1384374