Mathematics – Rings and Algebras
Scientific paper
2010-01-12
Mathematics
Rings and Algebras
10 p
Scientific paper
In this article, we describe the right ideals of $A_1:=k[t,\partial]$, the first Weyl agebra, over any field $k$ of characteristic zero. For this, we define the notion of primary decomposable subspaces of $k[t]$. This description generalizes a result of Cannings and Holland obtained for an algebraically closed field $k$. Dans cet article, on d\'ecrit les id\'eaux \`a droite de $A_1$ sur un corps quelconque de caract\'eristique nulle. Pour cela on d\'efinit la notion de sous-espaces d\'ecomposables primaires de $k[t]$. Cette description g\'en\'eralise un r\'esultat de Cannings et Holland obtenu pour un corps $k$ alg\'ebriquement clos.
Kouakou Matthias
Tchoudjem Alexis
No associations
LandOfFree
Primary decomposable subspaces of $k[t]$ and Right ideals of the first Weyl algebra $A_{1}(k)$ in characteristic zero does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Primary decomposable subspaces of $k[t]$ and Right ideals of the first Weyl algebra $A_{1}(k)$ in characteristic zero, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Primary decomposable subspaces of $k[t]$ and Right ideals of the first Weyl algebra $A_{1}(k)$ in characteristic zero will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-458943