Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates

Economy – Quantitative Finance – Pricing of Securities

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The problem of pricing Bermudan options using Monte Carlo and a nonparametric regression is considered. We derive optimal non-asymptotic bounds for a lower biased estimate based on the suboptimal stopping rule constructed using some estimates of continuation values. These estimates may be of different nature, they may be local or global, with the only requirement being that the deviations of these estimates from the true continuation values can be uniformly bounded in probability. As an illustration, we discuss a class of local polynomial estimates which, under some regularity conditions, yield continuation values estimates possessing this property.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-268205

All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.