Mathematics – Numerical Analysis
Scientific paper
2007-04-17
Mathematics
Numerical Analysis
Scientific paper
Finite element method is one of powerful numerical methods to solve PDE. Usually, if a finite element solution to a Poisson equation based on a triangulation of the underlying domain is not accurate enough, one will discard the solution and then refine the triangulation uniformly and compute a new finite element solution over the refined triangulation. It is wasteful to discard the original finite element solution. We propose a prewavelet method to save the original solution by adding a prewavelet subsolution to obtain the refined level finite element solution. To increase the accuracy of numerical solution to Poisson equations, we can keep adding prewavelet subsolutions. Our prewavelets are orthogonal in the $H^1$ norm and they are compactly supported except for one globally supported basis function in a rectangular domain. We have implemented these prewavelet basis functions in MATLAB and used them for numerical solution of Poisson equation with Dirichlet boundary conditions. Numerical simulation demonstrates that our prewavelet solution is much more efficient than the standard finite element method.
Lai Ming-Jun
Liu Haipeng
No associations
LandOfFree
Prewavelet Solution to Poisson Equations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Prewavelet Solution to Poisson Equations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Prewavelet Solution to Poisson Equations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-233402