Computer Science – Computers and Society
Scientific paper
2008-11-04
Computer Science
Computers and Society
Scientific paper
We present a method for accurately predicting the long time popularity of online content from early measurements of user access. Using two content sharing portals, Youtube and Digg, we show that by modeling the accrual of views and votes on content offered by these services we can predict the long-term dynamics of individual submissions from initial data. In the case of Digg, measuring access to given stories during the first two hours allows us to forecast their popularity 30 days ahead with remarkable accuracy, while downloads of Youtube videos need to be followed for 10 days to attain the same performance. The differing time scales of the predictions are shown to be due to differences in how content is consumed on the two portals: Digg stories quickly become outdated, while Youtube videos are still found long after they are initially submitted to the portal. We show that predictions are more accurate for submissions for which attention decays quickly, whereas predictions for evergreen content will be prone to larger errors.
Huberman Bernardo A.
Szabo Gabor
No associations
LandOfFree
Predicting the popularity of online content does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Predicting the popularity of online content, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Predicting the popularity of online content will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-183538