Mathematics – Representation Theory
Scientific paper
2003-07-07
Mathematics
Representation Theory
27 pages; A brief introduction added, references updated and expanded, the final version to appear in Moscow Mathematical Jour
Scientific paper
The main motivation for the study of cluster algebras initiated in
math.RT/0104151, math.RA/0208229 and math.RT/0305434 was to design an algebraic
framework for understanding total positivity and canonical bases in semisimple
algebraic groups. In this paper, we introduce and explicitly construct the
canonical basis for a special family of cluster algebras of rank 2.
Sherman Paul
Zelevinsky Andrei
No associations
LandOfFree
Positivity and canonical bases in rank 2 cluster algebras of finite and affine types does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Positivity and canonical bases in rank 2 cluster algebras of finite and affine types will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-10729