Mathematics – Combinatorics
Scientific paper
2008-06-09
Mathematics
Combinatorics
25 pages 20 figures Soumis a TCS
Scientific paper
In this paper, we are interested in the combinatorial analysis of the whole genome duplication - random loss model of genome rearrangement initiated in a paper of Chaudhuri, Chen, Mihaescu, and Rao in SODA 2006 and continued by Bouvel and Rossin in 2007. In this model, genomes composed of n genes are modeled by permutations of the set of integers [1..n], that can evolve through duplication-loss steps. It was previously shown that the class of permutations obtained in this model after a given number p of steps is a class of pattern-avoiding permutations of finite basis. The excluded patterns were described as the minimal permutations with d=2^p descents, minimal being intended in the sense of the pattern-involvement relation on permutations. Here, we give a local and simpler characterization of the set B_d of minimal permutations with d descents. We also provide a more detailed analysis - characterization, bijection and enumeration - of two particular subsets of B_d, namely the patterns in B_d of size d+2 and 2d.
Bouvel Mathilde
Pergola Elisa
No associations
LandOfFree
Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Posets and Permutations in the Duplication-Loss Model: Minimal Permutations with d Descents will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-401470