Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field

Mathematics – Probability

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

29 pages, 5 figures

Scientific paper

We study the statistics of the extremes of a discrete Gaussian field with logarithmic correlations at the level of the Gibbs measure. The model is defined on the periodic interval [0,1]. It is based on a model introduced by Bacry and Muzy, and is similar to the logarithmic Random Energy Model studied by Carpentier and Le Doussal, and more recently by Fyodorov and Bouchaud. At low temperature, it is shown that the normalized covariance of two points sampled from the Gibbs measure is either 0 or 1. This is used to prove that the joint distribution of the Gibbs weights converges in a suitable sense to that of a Poisson-Dirichlet variable. In particular, this proves a conjecture of Carpentier and Le Doussal that the statistics of the extremes of the log-correlated field behave as those of i.i.d. Gaussian variables and of branching Brownian motion at the level of the Gibbs measure. The proof is based on the computation of the free energy of a perturbation of the model, where a scale-dependent variance is introduced, and on general tools of spin glass theory.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Poisson-Dirichlet statistics for the extremes of a log-correlated Gaussian field will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-213230

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.