Mathematics – Algebraic Geometry
Scientific paper
1996-07-04
Mathematics
Algebraic Geometry
23 pages LaTeX. A revised version. The unnecessary restriction $d \ge 2g - 1$ of the previous version has been removed, and th
Scientific paper
Let $C \s \pr^2$ be an irreducible plane curve whose dual $C^* \s \pr^{2*}$ is an immersed curve which is neither a conic nor a nodal cubic. The main result states that the Poincar\'e group $\pi_1(\pr^2 \se C)$ contains a free group with two generators. If the geometric genus $g$ of $C$ is at least 2, then a subgroup of $G$ can be mapped epimorphically onto the fundamental group of the normalization of $C$, and the result follows. To handle the cases $g=0,1$, we construct universal families of immersed plane curves and their Picard bundles. This allows us to reduce the consideration to the case of Pl\"ucker curves. Such a curve $C$ can be regarded as a plane section of the corresponding discriminant hypersurface (cf. [Zar, DoLib]). Applying Zariski--Lefschetz type arguments we deduce the result from `the bigness' of the $d$-th braid group $B_{d,g}$ of the Riemann surface of $C$.
Dethloff Gerd
Orevkov S.
Zaidenberg Mikhail
No associations
LandOfFree
Plane curves with a big fundamental group of the complement does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Plane curves with a big fundamental group of the complement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Plane curves with a big fundamental group of the complement will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-301696