Other
Scientific paper
Jul 1997
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1997dps....29.1503e&link_type=abstract
American Astronomical Society, DPS meeting #29, #15.03; Bulletin of the American Astronomical Society, Vol. 29, p.992
Other
3
Scientific paper
The reflectance of Saturn has been examined at various latitudes (4deg S, 4deg N, 12deg N, 20deg N, 40deg N, 48deg N, 60deg N, 79deg N, 90deg N) in the ultraviolet. The data were obtained with the Hubble Space Telescope Faint Object Spectrograph (FOS) in October 1992 and covered a wavelength range of 180-230 nm. The observations have an angular resolution of 1". The absorption bands of acetylene are clearly visible in the spectra along with several broad features longward of 210 nm produced by Raman scattering of solar photons. The slope between roughly 190-210 nm can be reproduced using phosphine as a continuum absorber. No ammonia absorption bands are present in the spectra. Phosphine alone is unable to fit the spectra at wavelengths longer than 210 nm and some other continuum absorber must be invoked. With the use of a photochemical model, which combines the hydrocarbon, ammonia, and phosphine chemical cycles, and a multiple scattering radiative transfer model, we self-consistently determine the altitude profile of phosphine needed to fit the measured albedos from 190 to 210 nm. At 12deg N, the phosphine mixing ratio is found to be 1.4x10(-7) at 91 mbar dropping to 2.9x10(-9) at 43 mbar due to photolysis. Due to problems concerning grating scattered light in the FOS, we are only able to estimate the acetylene mixing ratio to be approximately 2.0x10(-8) . Using the height distribution of phosphine, we determine the eddy mixing coefficient in the upper troposphere. The eddy mixing coefficient is found to be sensitive to the phosphine mixing ratio at the lower boundary of our model located at 1.4 bar. For a phosphine mixing ratio of 2.0x10(-6) , the eddy mixing is determined to be 2.5x10(4) cm(2) s(-1) at 12deg N dropping to 3.4x10(3) cm(2) s(-1) at 60deg N. Within the range of expected values of the phosphine mixing ratio in the troposphere, the eddy mixing coefficient is found to be inversely proportional to this mixing ratio.
Atreya Sushil K.
Barnet Chris
Beebe Reta F.
Caldwell J. Jr. J.
Edgington Scott G.
No associations
LandOfFree
Phosphine Mixing Ratios and Eddy Mixing Coefficients in the Troposphere of Saturn does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Phosphine Mixing Ratios and Eddy Mixing Coefficients in the Troposphere of Saturn, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Phosphine Mixing Ratios and Eddy Mixing Coefficients in the Troposphere of Saturn will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1188046