Computer Science – Databases
Scientific paper
2011-05-21
Proceedings of the VLDB Endowment (PVLDB), Vol. 4, No. 7, pp. 440-450 (2011)
Computer Science
Databases
VLDB2011
Scientific paper
With the recent surge of social networks like Facebook, new forms of recommendations have become possible - personalized recommendations of ads, content, and even new friend and product connections based on one's social interactions. Since recommendations may use sensitive social information, it is speculated that these recommendations are associated with privacy risks. The main contribution of this work is in formalizing these expected trade-offs between the accuracy and privacy of personalized social recommendations. In this paper, we study whether "social recommendations", or recommendations that are solely based on a user's social network, can be made without disclosing sensitive links in the social graph. More precisely, we quantify the loss in utility when existing recommendation algorithms are modified to satisfy a strong notion of privacy, called differential privacy. We prove lower bounds on the minimum loss in utility for any recommendation algorithm that is differentially private. We adapt two privacy preserving algorithms from the differential privacy literature to the problem of social recommendations, and analyze their performance in comparison to the lower bounds, both analytically and experimentally. We show that good private social recommendations are feasible only for a small subset of the users in the social network or for a lenient setting of privacy parameters.
Korolova Aleksandra
Machanavajjhala Ashwin
Sarma Atish Das
No associations
LandOfFree
Personalized Social Recommendations - Accurate or Private? does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Personalized Social Recommendations - Accurate or Private?, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Personalized Social Recommendations - Accurate or Private? will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-713635