Performance tuned radioisotope thermophotovoltaic space power system

Other

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Thermoelectric, Electrogasdynamic And Other Direct Energy Conversion

Scientific paper

The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The baseline design, centered around components and measured parametric data developed by EDTEK, Inc., promised an overall thermal-to-electric system output of 23 W at a conversion efficiency of 19%, 1.92 kg system weight, and a specific power of 13.3 W/kg. The improved design reported herein promises up to 37.6 W at 30.1% efficiency, 1.5 kg system weight, up to 25 W/kg specific power, a six-fold reduction in thermal radiator size over the baseline design, as well as a lower isotope temperature for greater safety. The six-fold reduction in thermal radiator size removes one of the greatest obstacles to applying RTPV in space missions.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Performance tuned radioisotope thermophotovoltaic space power system does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Performance tuned radioisotope thermophotovoltaic space power system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Performance tuned radioisotope thermophotovoltaic space power system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1652492

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.