Statistics – Machine Learning
Scientific paper
2008-02-21
Electronic Journal of Statistics 2008, Vol. 2, 168-212
Statistics
Machine Learning
Published in at http://dx.doi.org/10.1214/08-EJS194 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by t
Scientific paper
10.1214/08-EJS194
Clustering analysis is one of the most widely used statistical tools in many emerging areas such as microarray data analysis. For microarray and other high-dimensional data, the presence of many noise variables may mask underlying clustering structures. Hence removing noise variables via variable selection is necessary. For simultaneous variable selection and parameter estimation, existing penalized likelihood approaches in model-based clustering analysis all assume a common diagonal covariance matrix across clusters, which however may not hold in practice. To analyze high-dimensional data, particularly those with relatively low sample sizes, this article introduces a novel approach that shrinks the variances together with means, in a more general situation with cluster-specific (diagonal) covariance matrices. Furthermore, selection of grouped variables via inclusion or exclusion of a group of variables altogether is permitted by a specific form of penalty, which facilitates incorporating subject-matter knowledge, such as gene functions in clustering microarray samples for disease subtype discovery. For implementation, EM algorithms are derived for parameter estimation, in which the M-steps clearly demonstrate the effects of shrinkage and thresholding. Numerical examples, including an application to acute leukemia subtype discovery with microarray gene expression data, are provided to demonstrate the utility and advantage of the proposed method.
Pan Wei
Shen Xiaotong
Xie Benhuai
No associations
LandOfFree
Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-579985