Pattern formation (I): The Keller-Segel Model

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

We investigate nonlinear dynamics near an unstable constant equilibrium in the classical Keller-Segel model. Given any general perturbation of magnitude $\delta$, we prove that its nonlinear evolution is dominated by the corresponding linear dynamics along a fixed finite number of fastest growing modes, over a time period of $ln(1/\delta)$. Our result can be interpreted as a rigourous mathematical characterization for early pattern formation in the Keller-Segel model.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Pattern formation (I): The Keller-Segel Model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Pattern formation (I): The Keller-Segel Model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pattern formation (I): The Keller-Segel Model will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-680488

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.