Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces

Computer Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

The interaction between S(-II) and ferric oxides exerts a major control for the sulphur and iron cycle and in particular for the carbon and electron flow in many aquatic systems. It is regarded to be a key reaction leading ultimately to pyrite formation, the pathways still remaining unresolved. We have studied the reaction between lepidocrocite (γ-FeOOH, 21-42 mmol L-1) and dissolved S(-II) (3-9 mmol L-1) in batch experiments at pH 7 in a glove box using TEM, XRD, Mössbauer spectroscopy, and wet chemistry extraction to explore the nanocrystalline products forming at different time steps in close contact to the lepidocrocite surface. S(0) and acid extractable Fe(II) (Fe(II)HCl) were the main products detected by wet chemistry extraction. The reaction could be divided into three steps: a rapid (<15 min) consumption of dissolved S(-II), formation of S(0) and the build-up of an Fe(II)HCl pool. Then in the absence of dissolved S(-II) concentrations of S(0) and Fe(II)HCl increased only slightly. TEM measurements revealed the occurrence of a mackinawite rim covering the lepidocrocite crystals and being separated from the lepidocrocite surface by an interfacial magnetite layer that can be regarded as a steady state product of the interaction between lepidocrocite and mackinawite. A significant fraction of Fe(II) was formed in excess to FeS within the first 2 h. The amount of this fraction increased with decreasing ratio between dissolved S(-II) concentration and the concentration of surface sites, which we attributed to a kinetic decoupling of S(-II) oxidation and Fe(II) detachment from the lepidocrocite surface. At low ratios, S(-II) seems to transfer electrons to lepidocrocite faster then stoichiometric amounts of FeS could. After 2 days Fe(II)HCl and S(0) started to decrease resulting in pyrite formation accompanied by traces of magnetite. TEM measurements indicated that mackinawite completely dissolved and precipitation of pyrite occurred dislocated from the lepidocrocite surface. The absence of dissolved sulphide under these conditions suggest that excess Fe(II) is involved in the formation of polysulphides which are key precursors during pyrite formation. We propose that the occurrence of excess Fe(II) is a common phenomenon particularly in low sulphide - high iron environments attributing significant reactivity to ferric (hydr)oxides.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-1558833

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.