Mathematics – Probability
Scientific paper
2008-10-02
Bernoulli 2010, Vol. 16, No. 4, 1312-1342
Mathematics
Probability
Published in at http://dx.doi.org/10.3150/09-BEJ243 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statisti
Scientific paper
10.3150/09-BEJ243
We study the non-equilibrium dynamics of a one-dimensional interacting particle system that is a mixture of the voter model and the exclusion process. With the process started from a finite perturbation of the ground state Heaviside configuration consisting of 1's to the left of the origin and 0's elsewhere, we study the relaxation time $\tau$, that is, the first hitting time of the ground state configuration (up to translation). We give conditions for $\tau$ to be finite and for certain moments of $\tau$ to be finite or infinite, and prove a result that approaches a conjecture of Belitsky et al. (Bernoulli 7 (2001) 119--144). Ours are the first non-existence-of-moments results for $\tau$ for the mixture model. Moreover, we give almost sure asymptotics for the evolution of the size of the hybrid (disordered) region. Most of our results pertain to the discrete-time setting, but several transfer to continuous-time. As well as the mixture process, some of our results also cover pure exclusion. We state several significant open problems.
MacPhee Iain M.
Menshikov Mikhail V.
Volkov Stanislav
Wade Andrew R.
No associations
LandOfFree
Passage-time moments and hybrid zones for the exclusion-voter model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Passage-time moments and hybrid zones for the exclusion-voter model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Passage-time moments and hybrid zones for the exclusion-voter model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-492300