Partially observed information and inference about non-Gaussian mixed linear models

Mathematics – Statistics Theory

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Published at http://dx.doi.org/10.1214/009053605000000543 in the Annals of Statistics (http://www.imstat.org/aos/) by the Inst

Scientific paper

10.1214/009053605000000543

In mixed linear models with nonnormal data, the Gaussian Fisher information matrix is called a quasi-information matrix (QUIM). The QUIM plays an important role in evaluating the asymptotic covariance matrix of the estimators of the model parameters, including the variance components. Traditionally, there are two ways to estimate the information matrix: the estimated information matrix and the observed one. Because the analytic form of the QUIM involves parameters other than the variance components, for example, the third and fourth moments of the random effects, the estimated QUIM is not available. On the other hand, because of the dependence and nonnormality of the data, the observed QUIM is inconsistent. We propose an estimator of the QUIM that consists partially of an observed form and partially of an estimated one. We show that this estimator is consistent and computationally very easy to operate. The method is used to derive large sample tests of statistical hypotheses that involve the variance components in a non-Gaussian mixed linear model. Finite sample performance of the test is studied by simulations and compared with the delete-group jackknife method that applies to a special case of non-Gaussian mixed linear models.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Partially observed information and inference about non-Gaussian mixed linear models does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Partially observed information and inference about non-Gaussian mixed linear models, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Partially observed information and inference about non-Gaussian mixed linear models will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-118524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.