Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics
Scientific paper
2012-04-16
Astronomy and Astrophysics
Astrophysics
Solar and Stellar Astrophysics
Accepted for publication in A&A. 10 pages, 7 figures, 2 table
Scientific paper
We study the PAH emission from protoplanetary disks. First, we discuss the dependence of the PAH band ratios on the hardness of the absorbed photons and the temperature of the stars. We show that the photon energy together with a varying degree of the PAH hydrogenation accounts for most of the observed PAH band ratios without the need to change the ionization degree of the molecules. We present an accurate treatment of stochastic heated grains in a vectorized three dimensional Monte Carlo dust radiative transfer code. The program is verified against results using ray tracing techniques. Disk models are presented for T Tauri and Herbig Ae stars. Particular attention is given to the photo-dissociation of the molecules. We consider beside PAH destruction also the survival of the molecules by vertical mixing within the disk. By applying typical X-ray luminosities the model accounts for the low PAH detection probability observed in T Tauri and the high PAH detection statistics found in Herbig Ae disks. Spherical halos above the disks are considered. We show that halos reduce the observed PAH band-to-continuum ratios when observed at high inclination. Finally, mid-IR images of disks around Herbig Ae disks are presented. We show that they are easier to resolve when PAH emission dominate.
Heymann Frank
Siebenmorgen Ralf
No associations
LandOfFree
PAHs in protoplanetary disks: emission and X-ray destruction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with PAHs in protoplanetary disks: emission and X-ray destruction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and PAHs in protoplanetary disks: emission and X-ray destruction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-288601