Other
Scientific paper
Jun 2006
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2006gecoa..70.2836c&link_type=abstract
Geochimica et Cosmochimica Acta, Volume 70, Issue 11, p. 2836-2855.
Other
7
Scientific paper
Solid phase and pore water chemical data collected in a sediment of the Haringvliet Lake are interpreted using a multi-component reactive transport model. This freshwater lake, which was formed as the result of a river impoundment along the southwestern coast of the Netherlands, is currently targeted for restoration of estuarine conditions. The model is used to assess the present-day biogeochemical dynamics in the sediment, and to forecast possible changes in organic carbon mineralization pathways and associated redox reactions upon salinization of the bottom waters. Model results indicate that oxic degradation (55%), denitrification (21%), and sulfate reduction (17%) are currently the main organic carbon degradation pathways in the upper 30 cm of sediment. Unlike in many other freshwater sediments, methanogenesis is a relatively minor carbon mineralization pathway (5%), because of significant supply of soluble electron acceptors from the well-mixed bottom waters. Although ascorbate-reducible Fe(III) mineral phases are present throughout the upper 30 cm of sediment, the contribution of dissimilatory iron reduction to overall sediment metabolism is negligible. Sensitivity analyses show that bioirrigation and bioturbation are important processes controlling the distribution of organic carbon degradation over the different pathways. Model simulations indicate that sulfate reduction would rapidly suppress methanogenesis upon seawater intrusion in the Haringvliet, and could lead to significant changes in the sediment’s solid-state iron speciation. The changes in Fe speciation would take place on time-scales of 20 100 years.
Canavan Richard W.
Jourabchi Parisa
Laverman Anniet M.
Slomp Caroline P.
Van Cappellen Philippe
No associations
LandOfFree
Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Organic matter mineralization in sediment of a coastal freshwater lake and response to salinization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1060396