Statistics – Machine Learning
Scientific paper
2010-12-25
Statistics
Machine Learning
Scientific paper
Most classification methods provide either a prediction of class membership or an assessment of class membership probability. In the case of two-group classification the predicted probability can be described as "risk" of belonging to a "special" class . When the required output is a set of ordinal-risk groups, a discretization of the continuous risk prediction is achieved by two common methods: by constructing a set of models that describe the conditional risk function at specific points (quantile regression) or by dividing the output of an "optimal" classification model into adjacent intervals that correspond to the desired risk groups. By defining a new error measure for the distribution of risk onto intervals we are able to identify lower bounds on the accuracy of these methods, showing sub-optimality both in their distribution of risk and in the efficiency of their resulting partition into intervals. By adding a new form of constraint to the existing maximum likelihood optimization framework and by introducing a penalty function to avoid degenerate solutions, we show how existing methods can be augmented to solve the ordinal risk-group classification problem. We implement our method for logistic regression (LR) and show a numeric example.
No associations
LandOfFree
Ordinal Risk-Group Classification does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ordinal Risk-Group Classification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ordinal Risk-Group Classification will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-94129