Statistics – Computation
Scientific paper
Mar 1993
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1993lpi....24...89b&link_type=abstract
In Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F p 89-90 (SEE N94-12015 01-91)
Statistics
Computation
Capture Effect, Celestial Mechanics, Gravitational Effects, Natural Satellites, Neptune (Planet), Orbital Mechanics, Satellite Orbits, Sun, Three Body Problem, Triton, Equations Of Motion, Simulation
Scientific paper
We investigate satellite escape/capture in the context of the restricted, circular three body problem as applied to the Sun, Neptune, and Triton. We have computed a large number of coplanar prograde and retrograde orbital simulations over a range of initial distances and velocities. The satellite starts at superior conjunction within approximately 2 Hill radii of Neptune and has a velocity orthogonal to the Sun-planet line. Orbits with these initial conditions can be reflected with respect to time, so an escape is simply the reverse of a capture. We numerically integrate the equations of motion to compute the satellite's position until it escapes, collides with Neptune, or after 100 planetary years fails to escape, when computations cease. The initial distance x and velocity v in the restricted problem uniquely define the Jacobi constant C, a conserved energy-like quantity. Plots of the simulation outcomes in the prograde and retrograde C, x phase spaces reveal distinct zones in which temporary satellites approach the planet closely enough that permanent capture can be effected by gas drag with a protoplanetary nebula or by collision with a pre-existing satellite. Single and double close-flybys constitute the most common possible capture orbits. Long term multiple flyby orbits occur near the stability limits between bound and unbound orbits, and are more common among retrograde captures.
Benner Lance A. M.
McKinnon William B.
No associations
LandOfFree
Orbital simulations of satellite escape/capture and the origin of satellites such as Triton does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Orbital simulations of satellite escape/capture and the origin of satellites such as Triton, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Orbital simulations of satellite escape/capture and the origin of satellites such as Triton will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1446977