Optimization and NP_R-Completeness of Certain Fewnomials

Mathematics – Algebraic Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 7 figures (3 of them tiny). This is close to the final conference proceedings version

Scientific paper

We give a high precision polynomial-time approximation scheme for the supremum of any honest n-variate (n+2)-nomial with a constant term, allowing real exponents as well as real coefficients. Our complexity bounds count field operations and inequality checks, and are polynomial in n and the logarithm of a certain condition number. For the special case of polynomials (i.e., integer exponents), the log of our condition number is quadratic in the sparse encoding. The best previous complexity bounds were exponential in the sparse encoding, even for n fixed. Along the way, we extend the theory of A-discriminants to real exponents and certain exponential sums, and find new and natural NP_R-complete problems.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Optimization and NP_R-Completeness of Certain Fewnomials does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Optimization and NP_R-Completeness of Certain Fewnomials, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimization and NP_R-Completeness of Certain Fewnomials will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-322023

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.