Mathematics – Numerical Analysis
Scientific paper
2010-09-19
Mathematics
Numerical Analysis
Scientific paper
Frames have established themselves as a means to derive redundant, yet stable decompositions of a signal for analysis or transmission, while also promoting sparse expansions. However, when the signal dimension is large, the computation of the frame measurements of a signal typically requires a large number of additions and multiplications, and this makes a frame decomposition intractable in applications with limited computing budget. To address this problem, in this paper, we focus on frames in finite-dimensional Hilbert spaces and introduce sparsity for such frames as a new paradigm. In our terminology, a sparse frame is a frame whose elements have a sparse representation in an orthonormal basis, thereby enabling low-complexity frame decompositions. To introduce a precise meaning of optimality, we take the sum of the numbers of vectors needed of this orthonormal basis when expanding each frame vector as sparsity measure. We then analyze the recently introduced algorithm Spectral Tetris for construction of unit norm tight frames and prove that the tight frames generated by this algorithm are in fact optimally sparse with respect to the standard unit vector basis. Finally, we show that even the generalization of Spectral Tetris for the construction of unit norm frames associated with a given frame operator produces optimally sparse frames.
Casazza Peter G.
Heinecke Andreas
Krahmer Felix
Kutyniok Gitta
No associations
LandOfFree
Optimally Sparse Frames does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimally Sparse Frames, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimally Sparse Frames will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-262750