Computer Science – Learning
Scientific paper
2003-11-13
Journal of Machine Learning Research 4 (2003) 971-1000
Computer Science
Learning
34 pages
Scientific paper
Various optimality properties of universal sequence predictors based on Bayes-mixtures in general, and Solomonoff's prediction scheme in particular, will be studied. The probability of observing $x_t$ at time $t$, given past observations $x_1...x_{t-1}$ can be computed with the chain rule if the true generating distribution $\mu$ of the sequences $x_1x_2x_3...$ is known. If $\mu$ is unknown, but known to belong to a countable or continuous class $\M$ one can base ones prediction on the Bayes-mixture $\xi$ defined as a $w_\nu$-weighted sum or integral of distributions $\nu\in\M$. The cumulative expected loss of the Bayes-optimal universal prediction scheme based on $\xi$ is shown to be close to the loss of the Bayes-optimal, but infeasible prediction scheme based on $\mu$. We show that the bounds are tight and that no other predictor can lead to significantly smaller bounds. Furthermore, for various performance measures, we show Pareto-optimality of $\xi$ and give an Occam's razor argument that the choice $w_\nu\sim 2^{-K(\nu)}$ for the weights is optimal, where $K(\nu)$ is the length of the shortest program describing $\nu$. The results are applied to games of chance, defined as a sequence of bets, observations, and rewards. The prediction schemes (and bounds) are compared to the popular predictors based on expert advice. Extensions to infinite alphabets, partial, delayed and probabilistic prediction, classification, and more active systems are briefly discussed.
No associations
LandOfFree
Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-47036