Mathematics – Probability
Scientific paper
2011-02-28
Mathematics
Probability
Scientific paper
We study an optimal investment problem under contagion risk in a financial model subject to multiple jumps and defaults. The global market information is formulated as progressive enlargement of a default-free Brownian filtration, and the dependence of default times is modelled by a conditional density hypothesis. In this It\^o-jump process model, we give a decomposition of the corresponding stochastic control problem into stochastic control problems in the default-free filtration, which are determined in a backward induction. The dynamic programming method leads to a backward recursive system of quadratic Backward Stochastic Differential Equations (BSDEs) in Brownian filtration, and our main result is to prove under fairly general conditions the existence and uniqueness of a solution to this system, which characterizes explicitly the value function and optimal strategies to the optimal investment problem. We illustrate our solutions approach with some numerical tests emphasizing the impact of default intensities, loss or gain at defaults, and correlation between assets. Beyond the financial problem, our decomposition approach provides a new perspective for solving quadratic BSDEs with finite number of jumps.
Jiao Ying
Kharroubi Idris
Pham Huyen
No associations
LandOfFree
Optimal investment under multiple defaults risk: a BSDE-decomposition approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimal investment under multiple defaults risk: a BSDE-decomposition approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal investment under multiple defaults risk: a BSDE-decomposition approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-425537