Mathematics – Optimization and Control
Scientific paper
2010-08-30
Mathematics
Optimization and Control
Scientific paper
We study the stochastic control problem of maximizing expected utility from terminal wealth under a non-bankruptcy constraint. The wealth process is subject to shocks produced by a general marked point process. The problem of the agent is to derive the optimal insurance strategy which allows "lowering" the level of the shocks. This optimization problem is related to a suitable dual stochastic control problem in which the delicate boundary constraints disappear. We characterize the dual value function as the unique viscosity solution of the corresponding a Hamilton Jacobi Bellman Variational Inequality (HJBVI in short).
No associations
LandOfFree
Optimal insurance demand under marked point processes shocks: a dynamic programming duality approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimal insurance demand under marked point processes shocks: a dynamic programming duality approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal insurance demand under marked point processes shocks: a dynamic programming duality approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-400787