Computer Science – Information Theory
Scientific paper
2011-09-12
Computer Science
Information Theory
21 pages, 4 figures, submitted to IEEE Trans. Signal Processing
Scientific paper
We provide a method for designing an optimal index assignment for scalar K-description coding. The method stems from a construction of translated scalar lattices, which provides a performance advantage by exploiting a so-called staggered gain. Interestingly, generation of the optimal index assignment is based on a lattice in K-1 dimensional space. The use of the K-1 dimensional lattice facilitates analytic insight into the performance and eliminates the need for a greedy optimization of the index assignment. It is shown that that the optimal index assignment is not unique. This is illustrated for the two-description case, where a periodic index assignment is selected from possible optimal assignments and described in detail. The new index assignment is applied to design of a K-description quantizer, which is found to outperform a reference K-description quantizer at high rates. The performance advantage due to the staggered gain increases with increasing redundancy among the descriptions.
Kleijn Bastiaan W.
Klejsa Janusz
Zhang Guoqiang
No associations
LandOfFree
Optimal Index Assignment for Multiple Description Scalar Quantization does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Optimal Index Assignment for Multiple Description Scalar Quantization, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Optimal Index Assignment for Multiple Description Scalar Quantization will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-60571