Open and closed boundaries in large-scale convective dynamos

Astronomy and Astrophysics – Astrophysics – Solar and Stellar Astrophysics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages, 7 figures, published version

Scientific paper

10.1051/0004-6361/200913722

Context. Earlier work has suggested that large-scale dynamos can reach and maintain equipartition field strengths on a dynamical time scale only if magnetic helicity of the fluctuating field can be shed from the domain through open boundaries. Aims. Our aim is to test this scenario in convection-driven dynamos by comparing results for open and closed boundary conditions. Methods. Three-dimensional numerical simulations of turbulent compressible convection with shear and rotation are used to study the effects of boundary conditions on the excitation and saturation of large-scale dynamos. Open (vertical-field) and closed (perfect-conductor) boundary conditions are used for the magnetic field. The shear flow is such that the contours of shear are vertical, crossing the outer surface, and are thus ideally suited for driving a shear-induced magnetic helicity flux. Results. We find that for given shear and rotation rate, the growth rate of the magnetic field is larger if open boundary conditions are used. The growth rate first increases for small magnetic Reynolds number, Rm, but then levels off at an approximately constant value for intermediate values of Rm. For large enough Rm, a small-scale dynamo is excited and the growth rate of the field in this regime increases as Rm^(1/2). Regarding the nonlinear regime, the saturation level of the energy of the total magnetic field is independent of Rm when open boundaries are used. In the case of perfect conductor boundaries, the saturation level first increases as a function of Rm, but then decreases proportional to Rm^(-1) for Rm > 30, indicative of catastrophic quenching. These results suggest that the shear-induced magnetic helicity flux is efficient in alleviating catastrophic quenching when open boundaries are used. The horizontally averaged mean field is still weakly decreasing as a function of Rm even for open boundaries.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Open and closed boundaries in large-scale convective dynamos does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Open and closed boundaries in large-scale convective dynamos, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Open and closed boundaries in large-scale convective dynamos will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-278964

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.