Statistics – Applications
Scientific paper
2011-03-07
Statistics
Applications
Scientific paper
We develop a geometrical interpretation of ternary probabilistic forecasts in which forecasts and observations are regarded as points inside a triangle. Within the triangle, we define a continuous colour palette in which hue and colour saturation are defined with reference to the observed climatology. In contrast to current methods, forecast maps created with this colour scheme convey all of the information present in each ternary forecast. The geometrical interpretation is then extended to verification under quadratic scoring rules (of which the Brier Score and the Ranked Probability Score are well--known examples). Each scoring rule defines an associated triangle in which the square roots of the score, the reliability, the uncertainty and the resolution all have natural interpretations as root--mean--square distances. This leads to our proposal for a Ternary Reliability Diagram in which data relating to verification and calibration can be summarised. We illustrate these ideas with data relating to seasonal forecasting of precipitation in South America, including an example of nonlinear forecast calibration. Codes implementing these ideas have been produced using the statistical software package R and are available from the authors.
Coelho Caio A. S.
Jupp Tim E.
Lowe Rachel
Stephenson David B.
No associations
LandOfFree
On the visualisation, verification and recalibration of ternary probabilistic forecasts does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the visualisation, verification and recalibration of ternary probabilistic forecasts, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the visualisation, verification and recalibration of ternary probabilistic forecasts will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-607251