Computer Science – Logic in Computer Science
Scientific paper
2009-09-28
Computer Science
Logic in Computer Science
Extended abstract appeared at 25th Symposium on Logic in Computer Science (LICS 2010). The authors expect this version will ap
Scientific paper
The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).
Bodirsky Manuel
Hils Martin
Martin Barnaby
No associations
LandOfFree
On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-235106