Statistics – Computation
Scientific paper
Dec 2008
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2008agufmsm23c..05c&link_type=abstract
American Geophysical Union, Fall Meeting 2008, abstract #SM23C-05
Statistics
Computation
2723 Magnetic Reconnection (7526, 7835), 7526 Magnetic Reconnection (2723, 7835), 7835 Magnetic Reconnection (2723, 7526)
Scientific paper
Magnetic reconnection is a key process in nature whereby magnetic energy is converted into kinetic and thermal energy. Magnetic reconnection fundamentally affects space, astrophysical, and laboratory plasmas, and usually happens on very fast time scales, possibly unrelated to underlying dissipation mechanisms. However, despite substantial theoretical progress in the understanding of fast reconnection (J. Birn et al., , J. Geophys. Res. 106, 3715, 2001). A fundamental analytical model capable of explaining these time scales has been lacking. Developing such a model is of the essence not only to further the basic understanding of reconnection, but also to provide resolution to controversies arising from numerical computations, which by necessity can only cover a limited region in parametric space. In this presentation, we will discuss a recently- developed analytical framework for describing the dynamics of a 2D diffusion region in Hall MHD. Equations controlling the diffusion region can be coupled to those modeling a macroscopic driver, thus providing a time- dependent description of the reconnection process (A. N. Simakov, L. Chacón, D. A. Knoll, Phys. Plasmas, 13, 082103, 2006). A steady-state analysis of the microscopic equations gives insight into the properties and limitations of the 2D reconnecting system. Despite the steady-state assumption, such insight has been shown to be applicable to predict maximum reconnection rates of highly dynamic systems.c,d,f Furthermore, we have found that the steady-state model adequately describes all regimes of interest of the ion inertial length di (A. N. Simakov and L. Chacón, Phys. Rev. Lett., accepted (2008)), recovering the resistive (Sweet-Parker) and electron MHD solutions in the appropriate limits (L. Chacón, A. N. Simakov, and A. Zocco, Phys. Rev. Lett. 99, 235001 (2007)). It also describes finite electron inertia effects (A. Zocco, L. Chacón, A. N. Simakov, "Electron inertia effects in 2D driven reconnection in electron MHD," Proc. of the Joint Varenna-Lausanne International Workshop on the Theory of Fusion Plasmas, Varenna, Italy, Aug. 25-29 (2008)). The model gives predictions for the dissipation region aspect ratio and the reconnection rate Ez in terms of dissipation and inertial parameters, and has been found to be in excellent agreement with non-linear simulations. It confirms a number of long-standing empirical results, and resolves several controversies. In particular, we find that both open X-point and elongated dissipation regions are possible, and that Ez depends strongly on di and on the length of the current sheet. Moreover, when applied to electron-positron plasmas, the model demonstrates that fast dispersive waves are not instrumental for fast reconnection (L. Chacón, A. N. Simakov, V. Lukin, and A. Zocco, Phys. Rev. Lett., 101, 025003, 2008). and that small-scale dissipation holds the key for the understanding of this phenomenon. The latter is a striking prediction, with important implications for the understanding of highly dynamic reconnection processes.
Chacón Luis
Simakov Andrei N.
Zocco Alessandro
No associations
LandOfFree
On the properties and limitations of magnetic reconnection in Hall MHD does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the properties and limitations of magnetic reconnection in Hall MHD, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the properties and limitations of magnetic reconnection in Hall MHD will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1095225