Mathematics – Dynamical Systems
Scientific paper
2011-10-14
Mathematics
Dynamical Systems
17 pages
Scientific paper
For a continuous map f on a compact metric space (X,d), a subset D of X is internally chain transitive if for every x and y in D and every delta > 0 there is a sequence of points {x=x_0,x_1, ...,x_n=y} such that d(f(x_i),x_{i+1}) < delta for i=0,1, ...,n-1. It is known that every omega-limit set is internally chain transitive; in earlier work it was shown that for X a shift of finite type, a closed subset D of X is internally chain transitive if and only if D is an omega-limit set for some point in X, and that the same is also true for the tent map with slope equal to 2. In this paper, we prove that for tent maps whose critical point c=1/2 is periodic, every closed, internally chain transitive set is necessarily an omega-limit set. Furthermore, we show that there are at least countably many tent maps with non-recurrent critical point for which there is a closed, internally chain transitive set which is not an omega-limit set. Together, these results lead us to conjecture that for those tent maps with shadowing (or pseudo-orbit tracing), the omega-limit sets are precisely those sets having internal chain transitivity.
Barwell Andrew
Davies Gareth
Good Chris
No associations
LandOfFree
On the omega-limit sets of tent maps does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the omega-limit sets of tent maps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the omega-limit sets of tent maps will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-523343