Computer Science – Computer Vision and Pattern Recognition
Scientific paper
2012-01-18
Computer Science
Computer Vision and Pattern Recognition
Scientific paper
Recent results in Compressive Sensing have shown that, under certain conditions, the solution to an underdetermined system of linear equations with sparsity-based regularization can be accurately recovered by solving convex relaxations of the original problem. In this work, we present a novel primal-dual analysis on a class of sparsity minimization problems. We show that the Lagrangian bidual (i.e., the Lagrangian dual of the Lagrangian dual) of the sparsity minimization problems can be used to derive interesting convex relaxations: the bidual of the $\ell_0$-minimization problem is the $\ell_1$-minimization problem; and the bidual of the $\ell_{0,1}$-minimization problem for enforcing group sparsity on structured data is the $\ell_{1,\infty}$-minimization problem. The analysis provides a means to compute per-instance non-trivial lower bounds on the (group) sparsity of the desired solutions. In a real-world application, the bidual relaxation improves the performance of a sparsity-based classification framework applied to robust face recognition.
Elhamifar Ehsan
Sastry Shankar S.
Singaraju Dheeraj
Tron Roberto
Yang Allen Y.
No associations
LandOfFree
On the Lagrangian Biduality of Sparsity Minimization Problems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the Lagrangian Biduality of Sparsity Minimization Problems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Lagrangian Biduality of Sparsity Minimization Problems will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-396100