On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds

Mathematics – Differential Geometry

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

26 pages

Scientific paper

On non-K\"ahler manifolds the notion of harmonic maps is modified to that of Hermitian harmonic maps in order to be compatible with the complex structure. The resulting semilinear elliptic system is {\it not} in divergence form. The case of noncompact complete preimage and target manifolds is considered. We give conditions for existence and uniqueness of Hermitian-harmonic maps and solutions of the corresponding parabolic system, which observe the non-divergence form of the underlying equations. Numerous examples illustrate the theoretical results and the fundamental difference to harmonic maps.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the existence of Hermitian-harmonic maps from complete Hermitian to complete Riemannian manifolds will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-204703

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.