Mathematics – Statistics Theory
Scientific paper
2008-01-30
J. Stat. Plann. Inference 139 (2009) 2775-2790
Mathematics
Statistics Theory
revised version; minor changes and some material added
Scientific paper
10.1016/j.jspi.2009.01.003
We study the distribution of the adaptive LASSO estimator (Zou (2006)) in finite samples as well as in the large-sample limit. The large-sample distributions are derived both for the case where the adaptive LASSO estimator is tuned to perform conservative model selection as well as for the case where the tuning results in consistent model selection. We show that the finite-sample as well as the large-sample distributions are typically highly non-normal, regardless of the choice of the tuning parameter. The uniform convergence rate is also obtained, and is shown to be slower than $n^{-1/2}$ in case the estimator is tuned to perform consistent model selection. In particular, these results question the statistical relevance of the `oracle' property of the adaptive LASSO estimator established in Zou (2006). Moreover, we also provide an impossibility result regarding the estimation of the distribution function of the adaptive LASSO estimator.The theoretical results, which are obtained for a regression model with orthogonal design, are complemented by a Monte Carlo study using non-orthogonal regressors.
Pötscher Benedikt M.
Schneider Ulrike
No associations
LandOfFree
On the Distribution of the Adaptive LASSO Estimator does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the Distribution of the Adaptive LASSO Estimator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Distribution of the Adaptive LASSO Estimator will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-121505