Mathematics – Numerical Analysis
Scientific paper
2011-10-02
Mathematics
Numerical Analysis
Scientific paper
This paper concerns singular value decomposition (SVD)-based computable formulas and bounds for the condition number of the Total Least Squares (TLS) problem. For the TLS problem with the coefficient matrix $A$ and the right-hand side $b$, a new closed formula is presented for the condition number. Unlike an important result in the literature that uses the SVDs of both $A$ and $[A,\ b]$, our formula only requires the SVD of $[A,\ b]$. Based on the closed formula, both lower and upper bounds for the condition number are derived. It is proved that they are always sharp and estimate the condition number accurately. A few lower and upper bounds are further established that involve at most the smallest two singular values of $A$ and of $[A,\ b]$. Tightness of these bounds is discussed, and numerical experiments are presented to confirm our theory and to demonstrate the improvement of our upper bounds over the upper bound due to Golub and Van Loan. Such lower and upper bounds are particularly useful for large scale TLS problems since they require the computation of only a few singular values of $A$ and of $[A, \ b]$ other than all the singular values of them.
Jia Zhongxiao
Li Bingyu
No associations
LandOfFree
On the Condition Number of the Total Least Squares Problem does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the Condition Number of the Total Least Squares Problem, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Condition Number of the Total Least Squares Problem will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-284011