Mathematics – Optimization and Control
Scientific paper
2010-12-14
Mathematics
Optimization and Control
Scientific paper
We consider a combinatorial generalization of the classical multi-armed bandit problem that is defined as follows. There is a given bipartite graph of $M$ users and $N \geq M$ resources. For each user-resource pair $(i,j)$, there is an associated state that evolves as an aperiodic irreducible finite-state Markov chain with unknown parameters, with transitions occurring each time the particular user $i$ is allocated resource $j$. The user $i$ receives a reward that depends on the corresponding state each time it is allocated the resource $j$. The system objective is to learn the best matching of users to resources so that the long-term sum of the rewards received by all users is maximized. This corresponds to minimizing regret, defined here as the gap between the expected total reward that can be obtained by the best-possible static matching and the expected total reward that can be achieved by a given algorithm. We present a polynomial-storage and polynomial-complexity-per-step matching-learning algorithm for this problem. We show that this algorithm can achieve a regret that is uniformly arbitrarily close to logarithmic in time and polynomial in the number of users and resources. This formulation is broadly applicable to scheduling and switching problems in networks and significantly extends prior results in the area.
Gai Yi
Krishnamachari Bhaskar
Liu Mingyan
No associations
LandOfFree
On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Combinatorial Multi-Armed Bandit Problem with Markovian Rewards will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-179447