Mathematics – Analysis of PDEs
Scientific paper
2010-02-25
Mathematics
Analysis of PDEs
9 pages; References added
Scientific paper
We shall consider the regularity problem of solutions for complex Monge-Ampere equations. First we prove interior $C^2$ estimates of solutions in a bounded domain for complex Monge-Ampere equation with assumption of certain $L^p$ bound for Laplacian u, and of Lipschitz condition on right hand side. Then we shall construct a family of Pogorelov-type examples for complex Monge-Ampere equation. These examples give generalized entire solutions (as well as viscosity solutions) of complex Monge-Ampere equation $\det(u_{i\bar j})=1.
No associations
LandOfFree
On regularity of complex Monge-Ampere equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On regularity of complex Monge-Ampere equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On regularity of complex Monge-Ampere equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-380394