On regularity of complex Monge-Ampere equation

Mathematics – Analysis of PDEs

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

9 pages; References added

Scientific paper

We shall consider the regularity problem of solutions for complex Monge-Ampere equations. First we prove interior $C^2$ estimates of solutions in a bounded domain for complex Monge-Ampere equation with assumption of certain $L^p$ bound for Laplacian u, and of Lipschitz condition on right hand side. Then we shall construct a family of Pogorelov-type examples for complex Monge-Ampere equation. These examples give generalized entire solutions (as well as viscosity solutions) of complex Monge-Ampere equation $\det(u_{i\bar j})=1.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On regularity of complex Monge-Ampere equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On regularity of complex Monge-Ampere equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On regularity of complex Monge-Ampere equation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-380394

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.