Computer Science – Information Theory
Scientific paper
2012-03-08
Computer Science
Information Theory
Scientific paper
In this paper, we present an improved union bound on the Linear Programming (LP) decoding performance of the binary linear codes transmitted over an additive white Gaussian noise channels. The bounding technique is based on the second-order of Bonferroni-type inequality in probability theory, and it is minimized by Prim's minimum spanning tree algorithm. The bound calculation needs the fundamental cone generators of a given parity-check matrix rather than only their weight spectrum, but involves relatively low computational complexity. It is targeted to high-density parity-check codes, where the number of their generators is extremely large and these generators are spread densely in the Euclidean space. We explore the generator density and make a comparison between different parity-check matrix representations. That density effects on the improvement of the proposed bound over the conventional LP union bound. The paper also presents a complete pseudo-weight distribution of the fundamental cone generators for the BCH[31,21,5] code.
Be'ery Yair
Gidon Ohad
No associations
LandOfFree
On Pseudocodewords and Improved Union Bound of Linear Programming Decoding of HDPC Codes does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On Pseudocodewords and Improved Union Bound of Linear Programming Decoding of HDPC Codes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On Pseudocodewords and Improved Union Bound of Linear Programming Decoding of HDPC Codes will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-17732