On Estimating the First Frequency Moment of Data Streams

Computer Science – Data Structures and Algorithms

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages

Scientific paper

Estimating the first moment of a data stream defined as $F_1 = \sum_{i \in \{1, 2, \ldots, n\}} \abs{f_i}$ to within $1 \pm \epsilon$-relative error with high probability is a basic and influential problem in data stream processing. A tight space bound of $O(\epsilon^{-2} \log (mM))$ is known from the work of [Kane-Nelson-Woodruff-SODA10]. However, all known algorithms for this problem require per-update stream processing time of $\Omega(\epsilon^{-2})$, with the only exception being the algorithm of [Ganguly-Cormode-RANDOM07] that requires per-update processing time of $O(\log^2(mM)(\log n))$ albeit with sub-optimal space $O(\epsilon^{-3}\log^2(mM))$. In this paper, we present an algorithm for estimating $F_1$ that achieves near-optimality in both space and update processing time. The space requirement is $O(\epsilon^{-2}(\log n + (\log \epsilon^{-1})\log(mM)))$ and the per-update processing time is $O( (\log n)\log (\epsilon^{-1}))$.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On Estimating the First Frequency Moment of Data Streams does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On Estimating the First Frequency Moment of Data Streams, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On Estimating the First Frequency Moment of Data Streams will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-438006

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.