Mathematics – Metric Geometry
Scientific paper
1998-06-29
Comm. Math. Phys., 212 no.3 (2000), pp. 725-744
Mathematics
Metric Geometry
21 pages, 18 PostScript figures
Scientific paper
10.1007/s002200050022
Brillouin zones were introduced by Brillouin in the thirties to describe quantum mechanical properties of crystals, that is, in a lattice in $\R^n$. They play an important role in solid-state physics. It was shown by Bieberbach that Brillouin zones tile the underlying space and that each zone has the same area. We generalize the notion of Brillouin Zones to apply to an arbitrary discrete set in a proper metric space, and show that analogs of Bieberbach's results hold in this context. We then use these ideas to discuss focusing of geodesics in orbifolds of constant curvature. In the particular case of the Riemann surfaces H^2/Gamma(k), (k=2,3, or 5), we explicitly count the number of geodesics of length t that connect the point i to itself.
Peixoto Mauricio
Rocha A. C.
Sutherland Scott
Veerman J. J. P.
No associations
LandOfFree
On Brillouin Zones does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On Brillouin Zones, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On Brillouin Zones will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-71037