Nonlinear Sciences – Pattern Formation and Solitons
Scientific paper
1994-01-13
Nonlinear Sciences
Pattern Formation and Solitons
Tex file 21 pages, 15 figures available from author
Scientific paper
10.1088/0951-7715/7/3/012
In this paper we study a shallow water equation derivable using the Boussinesq approximation, which includes as two special cases, one equation discussed by Ablowitz et. al. [Stud. Appl. Math., 53 (1974) 249--315] and one by Hirota and Satsuma [J. Phys. Soc. Japan}, 40 (1976) 611--612]. A catalogue of classical and nonclassical symmetry reductions, and a Painleve analysis, are given. Of particular interest are families of solutions found containing a rich variety of qualitative behaviours. Indeed we exhibit and plot a wide variety of solutions all of which look like a two-soliton for t>0 but differ radically for t<0. These families arise as nonclassical symmetry reduction solutions and solutions found using the singular manifold method. This example shows that nonclassical symmetries and the singular manifold method do not, in general, yield the same solution set. We also obtain symmetry reductions of the shallow water equation solvable in terms of solutions of the first, third and fifth Painleve equations. We give evidence that the variety of solutions found which exhibit ``nonlinear superposition'' is not an artefact of the equation being linearisable since the equation is solvable by inverse scattering. These solutions have important implications with regard to the numerical analysis for the shallow water equation we study, which would not be able to distinguish the solutions in an initial value problem since an exponentially small change in the initial conditions can result in completely different qualitative behaviours.
Clarkson Peter A.
Mansfield Elizabeth L.
No associations
LandOfFree
On a Shallow Water Wave Equation does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with On a Shallow Water Wave Equation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On a Shallow Water Wave Equation will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-132190