On a conjecture of Erdos and Simonovits: Even Cycles

Mathematics – Combinatorics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

Let $\mc{F}$ be a family of graphs. A graph is {\em $\mc{F}$-free} if it contains no copy of a graph in $\mc{F}$ as a subgraph. A cornerstone of extremal graph theory is the study of the {\em Tur\'an number} $ex(n,\mc{F})$, the maximum number of edges in an $\mc{F}$-free graph on $n$ vertices. Define the {\em Zarankiewicz number} $z(n,\mc{F})$ to be the maximum number of edges in an $\mc{F}$-free {\em bipartite} graph on $n$ vertices. Let $C_k$ denote a cycle of length $k$, and let $\mc{C}_k$ denote the set of cycles $C_{\ell}$, where $3 \le \ell \leq k$ and $\ell$ and $k$ have the same parity. Erd\H{o}s and Simonovits conjectured that for any family $\mc{F}$ consisting of bipartite graphs there exists an odd integer $k$ such that $ex(n,\mc{F} \cup \mc{C}_k) \sim z(n,\mc{F})$. They proved this when $\mc{F}={C_4}$ by showing that $ex(n,\{C_4,C_5\}) \sim z(n,C_4)$. In this paper, we extend this result by showing that if $\ell \in \{2,3,5\}$ and $k > 2\ell$ is odd, then ${ex(n,\mc{C}_{2\ell} \cup {C_k}) \sim z(n,\mc{C}_{2\ell})$. Furthermore, if $k > 2\ell + 2$ is odd, then for infinitely many $n$ we show that the extremal $\mc{C}_{2\ell} \cup \{C_k\}$-free graphs are bipartite incidence graphs of generalized polygons. We observe that this exact result does not hold for any odd $k < 2\ell$, and furthermore the asymptotic result does not hold when $(\ell,k)$ is $(3,3)$, $(5,3)$ or $(5,5)$. Our proofs make use of pseudorandomness properties of nearly extremal graphs that are of independent interest.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On a conjecture of Erdos and Simonovits: Even Cycles does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On a conjecture of Erdos and Simonovits: Even Cycles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On a conjecture of Erdos and Simonovits: Even Cycles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-76391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.