Mathematics – Logic
Scientific paper
Jun 2007
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2007icar..188..324h&link_type=abstract
Icarus, Volume 188, Issue 2, p. 324-344.
Mathematics
Logic
50
Scientific paper
The formation process(es) responsible for creating the observed geologically recent gully features on Mars has remained the subject of intense debate since their discovery. We present new data and analysis of northern hemisphere gullies from Mars Global Surveyor data which is used to test the various proposed mechanisms of gully formation. We located 137 Mars Orbiter Camera (MOC) images in the northern hemisphere that contain clear evidence of gully landforms and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. Northern hemisphere gullies are clustered in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia. These gullies form in craters (84%), knobby terrain (4%), valleys (3%), other/unknown terrains (9%) and are found on all slope orientations although the majority of gullies are equator-facing. Most gullies (63%) are associated with competent rock strata, 26% are not associated with strata, and 11% are ambiguous. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 95% of the gully alcove bases with adequate data coverage lie at depths where subsurface temperatures are greater than 273 K and 5% of the alcove bases lie within the solid water regime. The average alcove length is 470 m and the average channel length is 690 m. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although some discrepancies still exist between prediction and observation, the shallow and deep aquifer models remain as the most plausible theories. Interior processes involving subsurface fluid sources are generally favored over exogenic processes such as wind and snowfall for explaining the origin of the martian gullies. These findings gleaned from the northern hemisphere data are in general agreement with analyses of gullies in the southern hemisphere [Heldmann, J.L., Mellon, M.T., 2004. Icarus 168, 285 304].
Carlsson Ella
Heldmann Jennifer L.
Johansson Henrik
Mellon Michael T.
Toon Brian O.
No associations
LandOfFree
Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-880563